Isolation and Structure Elucidation of the New Fungal Metabolite (-)-Xylariamide A

Rohan A. Davis*

Chemical Biology Program, Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia

Received January 24, 2005

Chemical investigations of the terrestrial microfungus *Xylaria* sp. have afforded the new natural product (-)-xylariamide A (1). The gross structure of 1 was determined by interpretation of 1D and 2D NMR, UV, IR, and MS data. Confirmation of the structure and the absolute stereochemistry of 1 were determined by the total synthesis of (+)-xylariamide A (2). Synthetic 2 was produced by *N*,*O*-bis(trimethylsilyl)-acetamide-induced coupling of 3-chloro-L-tyrosine (3) with (*E*)-but-2-enedioic acid 2,5-dioxo-pyrrolidin-1-yl ester methyl ester (4). Optical rotation comparison of 1 with 2 indicated that the natural product (1) contained 3-chloro-D-tyrosine. Both enantiomers of xylariamide A were tested in a brine shrimp lethality assay, and only the natural product (1) showed toxicity.

Several thousand organohalogen compounds have been identified as biosynthetic products from living organisms.¹ While the oceans are the single largest source of naturally occurring organohalogens, many terrestrial plants, bacteria, insects, and lichens have also been identified as producers of halogenated natural products.² Both marineand terrestrial-derived fungi produce chlorinated metabolites; examples include pestalone,³ trichodermamide B,⁴ helicusins A-D,⁵ and lachnumon.⁶ Chlorinated fungal metabolites containing the 3-chloro-4-hydroxyl phenyl subunit are rare. To date only four such compounds have been isolated;⁷ these include coniothyriomycin,⁸ 3-chloro-4-hydroxybenzeneethanol,9 3-chloro-4-hydroxyphenylacetic acid,¹⁰ and 3-chloro-4-hydroxyphenylacetamide.¹¹ We have recently embarked on a research program looking for new structural and bioactive metabolites from microfungi isolated from Australian endemic plants.^{11,12} Examination of a local rainforest tree, Glochidion ferdinandi (family Euphorbiaceae), afforded several microfungal strains, one of which was identified as *Xylaria* sp. (family Xylariaceace). Chemical research on this particular strain has already yielded two new xanthones¹² and the novel metabolite 3-chloro-4-hydroxyphenylacetamide.¹¹ Ongoing investigations of the EtOAc extract resulting from the fungal isolate being cultured on solid media have resulted in the isolation of a new chlorinated natural product. Herein we report the isolation, structure elucidation, and absolute stereochemical determination of the novel metabolite that we have named (-)-xylariamide A (1).

The fungus *Xylaria* sp. (FRR 5657) was grown on damp white rice under static conditions, then extracted with EtOAc. This extract was initially separated by C18 flash column chromatography using H₂O and increasing amounts of CH₃OH. An early eluting fraction was subjected to C18 preparative HPLC (CH₃OH/H₂O) followed by phenyl preparative HPLC (CH₃OH/Aq TFA) to yield pure (–)-xylariamide A (1, 0.9 mg).

Compound 1 was isolated as an optically active pale yellow gum and was assigned the molecular formula $C_{14}H_{14}NO_6Cl$ on the basis of (–)-HRESIMS and ¹H and ¹³C NMR spectral data. The (–)-LRESIMS isotopic pattern of 1 confirmed the presence of one chlorine atom.¹³ The IR spectrum displayed two strong and broad absorptions at

more carbonyl groups. The ¹H NMR spectrum of 1 contained two exchangeable signals [δ 9.95, 8.80], five sp² methine signals [δ 7.17, 7.05, 6.97, 6.84, 6.54], three midfield multiplets [δ 2.77, 3.00, 4.46], and a methoxyl singlet $[\delta 3.71]$. The ¹³C NMR spectrum of **1** displayed 14 signals, of which 11 resonated between δ 119 and 173. The HSQC spectrum enabled all the proton signals to be assigned to their directly attached carbons. The three aromatic methine signals at δ 7.17 (d, J = 1.5 Hz, 1H), 6.84 (d, J = 8.5 Hz, 1H), and 6.97 (d, J = 8.5, 1.5 Hz, 1H) were assigned to a 1,3,4-trisubstituted benzene ring. This system was oxygenated at C-4 of the aromatic ring on the basis of strong ${}^{3}J_{\rm CH}$ HMBC correlations from both H-2 (δ 7.17) and H-6 (δ 6.97) to a carbon at δ 151.6. H-2 and H-6 also showed strong HMBC correlations to a carbon at δ 35.5, to which the diastereotopic protons δ 2.77 (H-7a) and 3.00 (H-7b) where attached. ROESY correlation between H-7a and H-7b with both methine protons H-2 and H-6 confirmed that C-7 (δ 35.5) was a benzylic carbon. The gCOSY spectrum and ¹H-¹H coupling constants revealed that the diastereotopic protons H-7a [δ 2.77 (dd, J = 14.5, 10.0 Hz, 1H)] and H-7b $[\delta 3.00 \text{ (dd, } J = 14.5, 5.0 \text{ Hz}, 1\text{H})]$ were positioned next to the aliphatic methine proton H-8 [δ 4.46 (ddd, J = 10.0, 8.0, 5.0 Hz, 1H)], which also showed a strong COSY correlation to the exchangeable proton at 8-NH [δ 8.80 (d, J = 8.0 Hz, 1H)]. These characteristic data suggested that (-)-xylariamide A contained a derivative of the aromatic a-amino acid tyrosine. Strong HMBC correlations from H-7a, H-7b, and H-8 to a carboxylic acid carbonyl at δ 172.3 provided further proof for this assignment. The olefinic protons at δ 6.54 (dd, J = 15.5 Hz, 1H) and 7.05 (d, J =15.5 Hz, 1H) were assigned to an isolated *E*-double bond on the basis of the multiplicity and magnitude of the coupling constants.¹³ Both these protons showed HMBC correlations to the carbonyl carbons at δ 162.7 and 165.4. The latter carbon was assigned to a methyl ester moiety on the basis of the only observed HMBC correlation from the methoxyl singlet at δ 3.71 (3H) to C-13. Linkage of this methyl ester terminated *E*-double bond to the amino acid portion of the molecule was achieved via HMBC correlations from both the olefinic proton (H-11) and amide proton (8-NH) to the amide carbonyl at δ 162.7 (C-10). A strong ROESY correlation between H-11 and 8-NH further supported this linkage. Although no 2D NMR correlations were

1716 and 1667 $\rm cm^{-1}$, suggesting that 1 contained two or

^{*} To whom correspondence should be addressed. Tel: +61 7 3875 6000. Fax: +61 7 3875 6001. E-mail: r.davis@griffith.edu.au.

 a (i) LiOH, acetone, rt, 1 h. (ii) $N\text{-Hydroxysuccinimide, EDCl, CH_3CN, rt, 24 h. (iii) 3-Chloro-L-tyrosine (3), BSA, DMF, 55 °C, 24 h.$

observed for the broad exchangeable signal at δ 9.95, this was assigned to a hydroxyl group attached to C-4 of the aromatic ring on the basis of the ¹H chemical shift of this hydroxyl moiety and the ¹³C chemical shift of this carbon $(\delta 151.6)$. By default, the chlorine atom present in 1 was attached to C-3 of the trisubstituted benzenoid system. Hence a 3-chloro-4-hydroxyphenyl system was established. The NMR data for this system showed only minor discrepancies (13C, <1.5 ppm; 1H, <0.09 ppm) with the aromatic portions of the previously isolated fungal metabolites, 3-chloro-4-hydroxyphenylacetic acid and 3-chloro-4-hydroxyphenylacetamide.¹¹ Although the carboxylic acid proton (9-OH) was not observed in the ¹H NMR spectrum of 1, the (-)-LRESIMS data provided evidence of a carboxylic acid group due to the fragment ions corresponding to $[M - 45]^{-13}$ Hence the gross structure for 1 was assigned to xylariamide A.

To determine the absolute stereochemistry of 1 and obtain more material for future biological testing, we synthesized xylariamide A using previously published peptide chemistry.¹⁴ Regardless of which enantiomer of xylariamide A we synthesized, the comparison of optical rotation sign would enable us to unequivocally assign the absolute stereochemistry of the natural product. The synthetic chemistry involved the use of the silvlating agent N,O-bis(trimethylsilyl)acetamide (BSA), which has been shown to induce amide bond formation between an unprotected amino acid and an N-succinimide-activated ester.¹⁴ For the synthesis of xylariamide A we used the commercial reagent 3-chloro-L-tyrosine (3), (E)-but-2-enedioic acid 2,5dioxo-pyrrolidin-1-yl ester methyl ester (4), and BSA in DMF at 55 °C for 24 h (Scheme 1). Reaction workup, which included C18 column chromatography and Sephadex LH-20 gel permeation separation, afforded pure xylariamide A (2, 47 mg, 48% yield). The NMR, MS, UV, and IR data for the synthetic compound were essentially identical to the natural product (1). However the optical rotation of synthetic xylariamide A (2) ($[\alpha]^{23}$ _D +17° (CH₃OH)) had the opposite sign of the naturally occurring material (1) ($[\alpha]^{24}$ _D -22° (CH₃OH)). Hence the synthetic material (+)-xylariamide A (2) was the enantiomer of the natural product, and thus 3-chloro-D-tyrosine was determined to be a constituent of (-)-xylariamide A (1).

Both synthetics 4^{15} and $5^{16,17}$ have been previously synthesized; however both were only partially characterized by spectroscopic methods. 1D and 2D NMR experiments were performed on both compounds in DMSO- d_6 , and full NMR assignments were made. Initially, the assignment of the ¹³C chemical shifts for C-2 and C-3 of 4 and 5 was not possible since both olefinic protons H-2 and H-3 in 4 and 5 had identical or similar ¹H chemical shifts and they both showed strong HMBC correlations to the carbonyl carbons C-1 and C-4. The full carbon NMR assignments for 4 and 5 were made possible due to gHMBC

Figure 1. Structure of (-)-xylariamide A (1).

Figure 2. Structure of cryptophycin A (7). Shared structural motif of 7 with 1 is outlined (- - -).

experiments performed on a 600 MHz Varian spectrometer equipped with a triple resonance cold probe. These data showed a ${}^{4}J_{\rm CH}$ correlation from 1-OCH₃ to C-2 in both compounds 4 and 5.

Interestingly, the natural product (-)-xylariamide A (1) shares a structural motif with the cyanobacteria-derived depsipeptide and potent antitumor agent cryptophycin A $(7)^{18}$ (Figure 2). Although compound 1 shared structural homology with only a small portion of cryptophycin A (7), this observation prompted us to test the natural product (1) and synthetic enantiomer (2) for toxicity.

Both (-)-xylariamide A (1) and (+)-xylariamide A (2) were screened for toxicity in a brine shrimp (*Artemia salina*) lethality assay.¹⁹ The synthetic enantiomer (2) showed no toxicity when screened at 20 or 200 μ g/mL, while the natural product (1) showed 0% and 71% lethality at 20 and 200 μ g/mL, respectively. Unfortunately, lack of material of 1 prevented us from calculating a LD₅₀ value in the brine shrimp lethality assay or testing (-)-xylariamide A in a panel of human carcinoma cell lines. The synthesis of (-)-xylariamide A (1) is currently underway; more material will allow further biological evaluations of this new chlorinated fungal natural product to be performed.

Experimental Section

General Experimental Procedures. NMR spectra were recorded at 30 °C on either a Varian 500 or 600 MHz Unity INOVA spectrometer. The latter spectrometer was equipped with a triple resonance cold probe. The ¹H and ¹³C chemical shifts were referenced to the solvent peak for DMSO- d_6 at δ 2.49 and 39.51, respectively. LRESIMS were recorded on a Fisons mass spectrometer. HRESIMS were recorded on a Bruker Daltronics Apex III 4.7e Fourier transform mass spectrometer. FTIR and UV spectra were recorded on a Perkin-Elmer 1725X spectrophotometer and a GBC UV/vis 916 spectrophotometer, respectively. Optical rotations were recorded on a Jasco P-1020 polarimeter. Melting points were determined on a Gallenkamp melting point apparatus and are uncorrected. Sephadex LH-20 packed into an open glass column (45 mm \times 450 mm) was used for gel permeation chromatography. A Waters AP-2 MPLC column (20 mm \times 90 mm) packed with Alltech Davisil silica $30-40 \ \mu m \ 60 \ \text{\AA}$ was used for synthetic reaction purification. A Phenomenex Strata Si-1 or C18-E SPE cartridge (1 g, 50 μ m, 70 Å) was used for synthetic reaction cleanup. A Waters 600 pump equipped with a Waters 996 PDA detector and a Rheodyne injector were used for HPLC. Thermo Hypersil C18 and phenyl BDS 5 μ m 143 Å preparative columns $(21.2 \text{ mm} \times 150 \text{ mm})$ were used for HPLC separations. All solvents used for chromatography, UV, and MS were Lab-Scan HPLC grade, and the H₂O used was Millipore Milli-Q PF filtered. All synthetic reagents were purchased from Sigma-Aldrich. All fungal culture media were purchased from Difco.

Fungal Material. The collection and identification of Xylaria sp. (FRR 5657) are detailed elsewhere.¹²

Fermentation, Extraction, and Isolation. The fungal isolate was initially grown in three culture tubes each containing malt extract broth (10 mL) at 30 °C for 5 days. These cultures were transferred to three conical flasks (500 mL) each containing sterilized damp white rice (50 g of rice plus 100 mL of H_2O), and the fermentation was allowed to proceed under static conditions at 25 °C for 28 days. EtOAc extraction of the cultures followed by removal of the solvent in vacuo yielded a dark green gum (1.57 g). This extract was preabsorbed to C18 silica, then loaded onto a C18 flash column, and a 20% stepwise gradient was performed from 100% H_2O to 100% CH₃OH. The 20% CH₃OH/80% H₂O elution was further purified by C18 preparative HPLC using a linear gradient from 100% H_2O to 50% $CH_3OH/50\%$ H_2O in 50 min at a flow rate of 8 mL/min. Fraction 14 (11.6 mg, $t_{\rm R} = 38-41$ min) was subjected to phenyl preparative HPLC using a linear gradient from 100% aqueous TFA (1.0%) to 100% CH₃OH in 20 min at a flow rate of 6 mL/min and yielded pure (-)-xylariamide A $(1, 0.9 \text{ mg}, t_{\rm R} = 17.2 \text{ min}).$

(-)-Xylariamide A (1): stable yellow gum; $[\alpha]^{24}D - 22^{\circ}$ (c 0.060, CH₃OH); UV (CH₃OH) λ_{max} (log ϵ) 202 (4.05), 217 (sh) (3.74), 278 (3.12) nm; IR $\nu_{\rm max}$ (NaCl) 3600–3100, 1716, 1667, 1544, 1511, 1438, 1293, 1197, 1024, 975, 826 cm^{-1}; ^1H NMR $(500 \text{ MHz}, \text{DMSO-}d_6) \delta 2.77 (1\text{H}, \text{dd}, J = 14.5, 10.0 \text{ Hz}, \text{H-}7a),$ $3.00 (1H, dd, J = 14.5, 5.0 Hz, H-7b), 3.71 (3H, s, 13-OCH_3),$ 4.46 (1H, ddd, J = 10.0, 8.0, 5.0 Hz, H-8), 6.54 (1H, d, J =15.5 Hz, H-12), 6.84 (1H, d, J = 8.5 Hz, H-5), 6.97 (1H, dd, J = 8.5, 1.5 Hz, H-6), 7.05 (1H, d, J = 15.5 Hz, H-11), 7.17 (1H, d, J = 1.5 Hz, H-2), 8.80 (1H, d, J = 8.0 Hz, 8-NH), 9.95 (1H, brs, 4-OH); 13 C NMR (125 MHz, DMSO- d_6) δ 35.5 (C-7), 52.0 (13-OCH₃), 53.8 (C-8), 116.4 (C-5), 119.2 (C-3), 128.6 (C-12), 128.6 (C-6), 128.9 (C-1), 130.2 (C-2), 136.9 (C-11), 151.6 (C-4), 162.7 (C-10), 165.4 (C-13), 172.3 (C-9); (-)-LRESIMS m/z (rel int) 168 (15), 167 (5), 282 (10), 284 (3), 326 (100), 328 (33); (–)-HRESIMS m/z 326.04257 (C₁₄H₁₃NO₆³⁵Cl [M – H]⁻ requires 326.04369).

Synthesis of (E)-But-2-enedioic Acid Monomethyl Ester (5). The commercial reagent (E)-but-2-enedioic acid dimethyl ester (6, 1.44 g, 10 mmol) was dissolved in acetone (70 mL) at room temperature, and 1 N LiOH (10 mL, 10 mmol) was slowly added over 15 min to the stirred solution. The reaction was stirred for 1 h, diluted with 2 N HCl (200 mL), saturated with NaCl, and then extracted with EtOAc (3 \times 200 mL). The EtOAc layer was slowly evaporated, and the resulting precipitate was filtered and dried to yield pure (E)-but-2enedioic acid monomethyl ester (5, 1.13 mg, 87% yield) as a white amorphous solid: mp 142-143 °C (lit. mp 141-141.5 °C);^{16,17} UV (CH₃OH) λ_{max} (log ϵ) 209 (4.15) nm; IR ν_{max} (NaCl) 1803, 1775, 1751, 1656, 1441, 1425, 1362, 1314, 1286, 1204, 1101, 1049, 977, 962, 886, 809, 759, 736, 651 cm⁻¹; ¹H NMR (500 MHz, DMSO-d₆) & 3.72 (3H s, 1-OCH₃), 6.69 (2H, s, H-2, H-3), 13.18 (1H, brs, 4-OH); 13 C NMR (125 MHz, DMSO- d_6) δ 52.3 (1-OCH₃), 132.3 (C-2), 134.7 (C-3), 165.1 (C-1), 165.7 (C-4); (-)-LRESIMS m/z (rel int) 129 (100); (-)-HRESIMS m/z 129.01930 ($C_5H_5O_4$ [M - H]⁻ requires 129.01933).

Synthesis of (E)-But-2-enedioic Acid 2,5-Dioxo-pyrrolidin-1-yl Ester Methyl Ester (4). (E)-But-2-enedioic acid monomethyl ester (5, 260 mg, 2 mmol), EDCI (768 mg, 4 mmol), and N-hydroxysuccinimide (690 mg, 6 mmol) were dissolved in dry CH₃CN (5 mL), and the reaction was stirred at room temperature for 24 h. The reaction mixture was preabsorbed to silica, then loaded onto a glass column and flushed with 100% EtOAc (50 mL). The EtOAc wash was evaporated to dryness, redissolved in 100% DCM, and injected onto a MPLC silica-packed column using isocratic conditions of 40% EtOAc/60% hexanes at a flow rate of 6 mL/min for 30 min. This yielded pure (E)-but-2-enedioic acid 2,5-dioxopyrrolidin-1-yl ester methyl ester (4, 180 mg, 40% yield, $t_{\rm R} =$ 12.0 min) as a white amorphous solid: mp 93-95 °C (lit. mp 93.5–94.5 °C);¹⁵ UV (CH₃OH) $\lambda_{\rm max}$ (log ϵ) 213 (3.47), 263 (sh) (2.53) nm; IR $\nu_{\rm max}$ (NaCl) 1722, 1682, 1633, 1440, 1413, 1317, 1286, 1266, 1177, 997, 918, 778, 653, 562 cm^{-1}; ^1H NMR (500 MHz, DMSO-d₆) & 2.85 (4H, s, H-6, H-7), 3.78 (3H s, 1-OCH₃), 7.07 (1H, d, *J* = 16.0 Hz, H-3), 7.11 (1H, d, *J* = 16.0 Hz, H-2); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 25.5 (2C, C-6, C-7), 52.6 (1-OCH₃), 126.9 (C-3), 137.9 (C-2), 163.9 (C-1), 160.6 (C-4), 169.8 (2C, C-5, C-8); (+)-LRESIMS *m/z* (rel int) 228 (20), 250 (100); (+)-HRESIMS m/z 250.03208 (C₉H₉NO₆Na [M + Na]⁺ requires 250.03221).

Synthesis of (+)-Xylariamide A (2). N,O-Bis(trimethylsilyl)acetamide (439 μ L, 1.8 mmol) was added to (E)-but-2enedioic acid 2,5-dioxo-pyrrolidin-1-yl ester methyl ester (4, 68 mg, 0.3 mmol) and 3-chloro-L-tyrosine (3, 195 mg, 0.9 mmol) in dry DMF (3 mL), and the reaction was heated at 55 °C for 24 h. Upon cooling, the DMF was removed in vacuo and the residue was preabsorbed to C18. The C18 material was added to a C18 SPE cartridge, and 20% stepwise elutions were run from 100% aqueous TFA (0.1%) to 100% CH₃OH (10 mL washes). Fractions 3 and 4 were combined, then subjected to Sephadex LH-20 chromatography using 100% CH₃OH as the eluent at a flow rate of 4.5 mL/min. All resulting fractions were analyzed by TLC and identical fractions combined to yield pure (+)-xylariamide A (2, 47 mg, 48% yield) as a stable yellow gum: $[\alpha]^{23}_{D}$ +17° (c 0.313, CH₃OH); UV (CH₃OH) λ_{max} (log ϵ) 207 (4.18), 218 (sh) (4.08), 278 (3.51) nm; IR $\nu_{\rm max}$ (NaCl) 3400– 3100, 1716, 1667, 1541, 1512, 1437, 1293, 1227, 1197, 1167, 1056, 1020, 977, 818 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) δ 2.77 (1H, dd, J = 14.0, 9.5 Hz, H-7a), 3.00 (1H, dd, J = 14.0, 4.5 Hz, H-7b), 3.71 (3H, s, 13-OCH₃), 4.44 (1H, ddd, J = 9.5, 8.5, 4.5 Hz, H-8), 6.54 (1H, d, J = 16.0 Hz, H-12), 6.85 (1H, d, J = 8.5 Hz, H-5), 6.97 (1H, d, J = 8.5 Hz, H-6), 7.06 (1H, d, J = 16.0 Hz, H-11), 7.16 (1H, s, H-2), 8.77 (1H, d, J = 8.5 Hz, 8-NH), 10.08 (1H, brs, 4-OH); ¹³C NMR (125 MHz, DMSO-d₆) δ 35.6 (C-7), 52.0 (13-OCH₃), 54.1 (C-8), 116.4 (C-5), 119.1 (C-3), 128.5 (C-12), 128.6 (C-6), 129.1 (C-1), 130.2 (C-2), 137.1 (C-11), 151.6 (C-4), 162.6 (C-10), 165.4 (C-13), 172.4 (C-9); (-)-LRESIMS m/z (rel int) 168 (20), 167 (7), 282 (10), 284 (3), 326 (100), 328 (33); (-)-HRESIMS *m*/*z* 326.04419 (C₁₄H₁₃NO₆³⁵Cl $[M - H]^{-}$ requires 326.04369).

Brine Shrimp Lethality Assay. Brine shrimp eggs were obtained from Bio-Marine Aquafauna and were hatched in artificial seawater prepared from Instant Ocean (Aquarium Systems). The hatching, harvesting, and dispensing of nauplii were performed in a manner similar to that described by Solis et al.¹⁹ Compounds 1 and 2 were added to live nauplii (10-20 per vial, $V_{\rm T} = 500 \ \mu$ L) in glass vials (2 mL), and following 24 h of drug treatment the brine shrimp lethality was measured by counting the number of dead (nonmotile) nauplii per vial. Compounds 1 and 2 were tested in triplicate at 20 and 200 μ g/mL and were solubilized in 100% DMSO with a final DMSO concentration of 2% in each vial. The brine shrimp responded typically when treated with the laboratory standards, lissoclinotoxins E and F.²⁰ For example, the LD₅₀ of lissoclinotoxin F toward the brine shrimp was $\sim 5 \,\mu$ g/mL.

Acknowledgment. The author thanks the Eskitis Institute and Griffith University (NRG) for research funding, and Drs. J. I. Pitt, A. Hocking, and N. Tran-Dinh from Food Science Australia for fungal identification. Dr. J. Mitchell from Griffith University is acknowledged for obtaining the HRESIMS data.

Supporting Information Available: ¹H and ¹³C NMR spectra and LRESIMS data for compounds 1, 2, 4, and 5. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- Gribble, G. W. Prog. Chem. Org. Nat. Prod. 1996, 68, 1–423.
 Gribble, G. W. Chemosphere 2003, 52, 289–297.
 Cueto, M.; Jensen, P. R.; Kauffman, C.; Fenical, W.; Lobkovsky, E.; (3) Cueto, M.; Jensen, P. R.; Kauffman, C.; Fenical, W.; Lobkovsky, E.; Clardy, J. J. Nat. Prod. 2001, 64, 1444–1446.
 (4) Garo, E.; Starks, C. M.; Jensen, P. R.; Fenical, W.; Lobkovsky, E.; Clardy, J. J. Nat. Prod. 2003, 66, 423–426.
 (5) Yoshida, E.; Fujimoto, H.; Baba, M.; Yamazaki, M. Chem. Pharm. Bull. 1995, 43, 1307–1310.
 (6) Stadler, M.; Anke, H.; Bergquist, K. E.; Sterner, O. J. Antibiot. 1993, 46, 069, 071

- 46,968-971(7)
- Dictionary of Natural Products on CD-ROM, 12.2 ed.; Chapman and Hall Electronic Publishing Division, 2004
- Krohn, K.; Franke, C.; Jones, P. G.; Aust, H. J.; Draeger, S.; Schulz, B. *Liebigs Ann. Chem.* **1992**, 789–798. (8)

- (10)(11) Davis, R. A.; Watters, D.; Healy, P. C. Tetrahedron Lett. 2005, 46,
- 919-921.
- (12) Healy, P. C.; Hocking, A.; Tran-Dinh, N.; Pitt, J. I.; Shivas, R. G.; Mitchell, J. K.; Kotiw, M.; Davis, R. A. Phytochemistry 2004, 65, 2373-2378.
- (13) Pretsch, E.; Buhlmann, P.; Affolter, C. Structure Determination of Organic Compounds. Table of Spectral Data, 3rd ed.; Springer-Verlag: Berlin, 2000.
 (14) Patel, V. F.; Andis, S. L.; Kennedy, J. H.; Ray, J. E.; Schultz, R. M.
- J. Med. Chem. 1999, 42, 2588-2603.
- (15) Andruszkiewicz, R.; Chmara, H.; Milewski, S.; Borowski, E. Int. J. Pept. Protein Res. 1986, 27, 449–453.
 (16) Niwayama, S. J. Org. Chem. 2000, 65, 5834–5836.
- (17) Dymicky, M.; Buchanan, R. L. Org. Prep. Proced. Int. 1985, 17, 121-131.

- 131.
 Barrow, R. A.; Hemscheidt, T.; Liang, J.; Paik, S.; Moore, R. E.; Tius, M. A. J. Am. Chem. Soc. 1995, 117, 2479–2490.
 Solis, P. N.; Wright, C. W.; Anderson, M. M.; Gupta, M. P.; Phillipson, J. D. Planta Med. 1993, 59, 250–252.
 Davis, R. A.; Sandoval, I. T.; Concepcion, G. P.; Moreira da Rocha, R.; Ireland, C. M. Tetrahedron 2003, 59, 2855–2859.

NP050025H